miércoles, 6 de mayo de 2009

domingo, 26 de abril de 2009








Los ácidos nucleicos tienen al menos dos funciones: trasmitir las características hereditarias de una generación a la siguiente y dirigir la síntesis de proteínas específicas


Los ácidos nucleicos son macromoléculas, polímeros formados por la repetición de monómeros llamados nucleótidos, unidos mediante enlaces fosfodiéster. Se forman, así, largas cadenas o polinucleótidos, lo que hace que algunas de estas moléculas lleguen a alcanzar tamaños gigantes (de millones de nucleótidos de largo).


El descubrimiento de los ácidos nucleicos se debe a Friedrich Miescher, quien en la década de 1860 aisló de los núcleos de las células una sustancia ácida a la que llamó nucleína, nombre que posteriormente se cambió a ácido nucleico.
Tipos de ácidos nucleicos.


Existen dos tipos de ácidos nucleicos: ADN (ácido desoxirribonucleico) y ARN (ácido ribonucleico), que se diferencian en:
El glúcido (pentosa) que contienen: la desoxirribosa en el ADN y la ribosa en el ARN.
Las bases nitrogenadas que contienen: adenina, guanina, citosina y timina en el ADN; adenina, guanina, citosina y uracilo en el ARN.
En los eucariotas la estructura del ADN es de doble cadena, mientras que la estructura del ARN es monocatenaria, aunque puede presentarse en forma extendida, como el ARNm, o en forma plegada, como el ARNt y el ARNr.
La masa molecular del ADN es generalmente mayor que la del ARN.
Nucleósidos y nucleótidos
Las unidades que forman los ácidos nucleicos son los nucleótidos. Cada nucleótido es una molécula compuesta por la unión de tres unidades: un monosacárido de cinco carbonos (una pentosa, ribosa en el ARN y desoxirribosa en el ADN), una base nitrogenada purínica (adenina, guanina) o pirimidínica (citosina, timina o uracilo) y uno o varios grupos fosfato (ácido fosfórico). Tanto la base nitrogenada como los grupos fosfato están unidos a la pentosa.
La unión formada por la pentosa y la base nitrogenada se denomina nucleósido. Cuando lleva unido una unidad de fosfato al carbono 5' de la ribosa o desoxirribosa y dicho fosfato sirve de enlace entre nucleótidos, uniéndose al carbono 3' del siguiente nucleótido; se denomina nucleótido-monofosfato (como el AMP) cuando hay un solo grupo fosfato, nucleótido-difosfato (como el ADP) si lleva dos y nucleótido-trifosfato (como el ATP) si lleva tres.


Listado de Bases Nitrogenadas
Adenina, presente en ADN y ARN.
Guanina, presente en ADN y ARN.
Citosina, presente en ADN y ARN.
Timina, exclusiva del ADN.
Uracilo, exclusiva del ARN.

ADN
El ADN es bicatenario, está constituido por dos cadenas polinucleotídicas unidas entre sí en toda su longitud. Esta doble cadena puede disponerse en forma lineal (ADN del núcleo de las células eucarióticas) o en forma circular (ADN de las células procarióticas, así como de las mitocondrias y cloroplastos eucarióticos). La molécula de ADN porta la información necesaria para el desarrollo de las características biológicas de un individuo y contiene los mensajes e instrucciones para que las células realicen sus funciones. Dependiendo de la composición del ADN (refiriéndose a composición como la secuencia particular de bases), puede desnaturalizarse o romperse los puentes de hidrógenos entre bases pasando a ADN de cadena simple o ADNsc abreviadamente.
Excepcionalmente, el ADN de algunos virus es monocatenario, es decir, está formado por un solo polinucleótido, sin cadena complementaria.


ARN
El ARN difiere del ADN en que la pentosa de los nucleótidos constituyentes, es ribosa en lugar de desoxirribosa, y en que en lugar de las cuatro bases A, G, C, T aparece A, G, C, U (es decir, uracilo en lugar de timina). Las cadenas de ARN son más cortas que las de ADN, aunque dicha característica es debido a consideraciones de carácter biológico, ya que no existe limitación química para formar cadenas de ARN tan largas como de ADN, al ser el enlace fosfodiéster químicamente idéntico. El ARN está constituido casi siempre por una única cadena (es monocatenario), aunque en ciertas situaciones, como en los ARNt y ARNr puede formar estructuras plegadas complejas.
Mientras que el ADN contiene la información, el ARN expresa dicha información, pasando de una secuencia lineal de nucleótidos, a una secuencia lineal de aminoácidos en una proteína.


Ácidos nucleicos artificiales:
Existen, aparte de los naturales, algunos ácidos nucleicos no presentes en la naturaleza sintetizados en el laboratorio.


Ácido nucleico peptídico, donde el esqueleto de fosfato-(desoxi)ribosa ha sido sustituido por 2-(N-aminoetil)glicina, unida por un enlace peptídico clásico. Las bases púricas y pirimidínicas se unen al esqueleto por el carbono carbonílico. Al carecer de un esqueleto cargado (el ión fosfato lleva una carga negativa a pH fisiológico en el ADN/ARN), se une con más fuerza a una cadena complementaria de ADN monocatenario, al no existir repulsión electrostática. La fuerza de interacción crece cuando se forma un ANP bicatenario. Este ácido nucleico, al no ser reconocido por algunos enzimas debido a su diferente estructura, resiste la acción de nucleasas y proteasas.


Morfolino y ácido nucleico bloqueado (LNA en inglés). El morfolino es un derivado de un ácido nucleico natural, con la diferencia de que usa un anillo de morfolina en vez del azúcar, conservando el enlace fosfodiéster y la base nitrogenada de los ácidos nucleicos naturales. Se usan con fines de investigación, generalmente en forma de oligómeros de 25 nucleótidos. Se usan para hacer genética inversa, ya que son capaces de unirse complementariamente a pre-ARNm evitando su posterior recorte y procesado. También tienen un uso farmacéutico, pudiendo actuar contra bacterias y virus o para tratar enfermedades genéticas al impedir la traducción de un determinado ARNm.


Ácido nucleico glicólico. Es un ácido nucleico artificial donde se sustituye la ribosa por glicerol, conservando la base y el enlace fosfodiéster. No existe en la naturaleza. Puede unirse complementariamente al ADN y al ARN, y sorprendentemente, lo hace de forma más estable. Es la forma químicamente más simple de un ácido nucleico y se especula con que haya sido el precursor ancestral de los actuales ácidos nucleicos.


Ácido nucleico treósico. Se diferencia de los ácidos nucleicos naturales en el azúcar del esqueleto, que en este caso es una treosa. Se han sintetizado cadenas híbridas ATN-ADN usando ADN polimerasas. Se une complementariamente al ARN, y podría haber sido su precursor.

viernes, 3 de abril de 2009

DIABETES

DIABETES

La diabetes es un desorden del metabolismo, el proceso que convierte el alimento que ingerimos en energía. La insulina es el factor más importante en este proceso. Durante la digestión se descomponen los alimentos para crear glucosa, la mayor fuente de combustible para el cuerpo. Esta glucosa pasa a la sangre, donde la insulina le permite entrar en las células. (La insulina es una hormona segregada por el páncreas, una glándula grande que se encuentra detrás del estómago).

En personas con diabetes, una de dos componentes de este sistema falla:

  • el páncreas no produce, o produce poca insulina (Tipo I); o
  • las células del cuerpo no responden a la insulina que se produce (Tipo II).

jueves, 2 de abril de 2009

HORMONAS



Las hormonas son sustancias segregadas por células especializadas, localizadas en glándulas de secreción interna o glándulas endócrinas (carentes de conductos), o también por células epiteliales e intersticiales con el fin de afectar la función de otras células. Hay hormonas animales y hormonas vegetales como las auxinas, ácido abscísico, citoquinina, giberelina y el etileno.
Son transportadas por vía sanguínea o por el espacio intersticial, solas (biodisponibles) o asociadas a ciertas proteínas (que extienden su vida media al protegerlas de la degradación) y hacen su efecto en determinados órganos o tejidos diana (o blanco) a distancia de donde se sintetizaron, sobre la misma célula que la sintetiza (acción autócrina) o sobre células contiguas (acción parácrina) interviniendo en la comunicación celular. Existen hormonas naturales y hormonas sintéticas. Unas y otras se emplean como medicamentos en ciertos trastornos, por lo general, aunque no únicamente, cuando es necesario compensar su falta o aumentar sus niveles si son menores de lo normal.
Las hormonas pertenecen al grupo de los mensajeros químicos, que incluye también a los neurotransmisores. A veces es difícil clasificar a un mensajero químico como hormona o neurotransmisor. Todos los organismos multicelulares producen hormonas, incluyendo las plantas (fitohormona). Las hormonas más estudiadas en animales (y humanos) son las producidas por las glándulas endócrinas, pero también son producidas por casi todos los órganos humanos y animales.
La especialidad médica que se encarga del estudio de las enfermedades relacionadas con las hormonas es la endocrinología.

CLASIFICACION DE HORMONAS
Peptídicas
Hipotalámicas
Adenohipofisarias
pancreáticas
Calcitonina
PTH
Plasmáticas
Hormonas derivadas de aminoácidos
Adrenalina
Noradrenalina
T4
T3

Hormonas esteroideas
Hormonas sexuales
· estrógenos
· andrógenos
· progesterona
Corticosteroides adrenales
· glucocorticoides
· mineralocorticoides

ENFERMEDADES POR DEFICIENCIA DE HORMONAS
Insomnio
Inquietud, trastornos del sueño
Fatiga de la glándula suprarrenal
Hipotiroidismo
Ataques de ansiedad o pánico
Sequedad del globo ocular
Frecuencia Urinaria
Aumento de peso y/o incremento de la grasa corporal

FUNCIONES DE LA HORMONAS

Las hormonas creadas por las glándulas endocrinas van directamente a la sangre y desde ella se dirigen al órgano, tejido o tipo de célula sobre el que deben actuar.

Son mensajeros químicos como los neurotransmisores por lo que llevan señales de un lugar a otro. Así, por ejemplo, pueden ser producidas por unas células con el fin de modificar la capacidad de otras de permitir el paso de determinada sustancia.

Entre las principales funciones de las hormonas se encuentran las siguientes:

· Crecimiento de una persona.

· Desarrollo de los órganos sexuales.

· Reproducción.

· Control de determinados órganos como el tiroides.

lunes, 30 de marzo de 2009

VITAMINAS



Las vitaminas son compuestos heterogéneos que no pueden ser sintetizados por el organismo, por lo que éste no puede obtenerlos más que a través de la ingestión directa. Las vitaminas son nutrientes esenciales, imprescindibles para la vida. No tomarlos puede ser trascendental para nuestra salud.

Las vitaminas se suelen clasificar según su solubilidad en agua o en lípidos:
Hidrosolubles:
Vitamina C o ácido ascórbico (antiescorbútica)
Complejo B
Vitamina B1 o tiamina (antineurítica)
Vitamina B2 o riboflavina
Vitamina B3, vitamina PP o niacina
Vitamina B5 o ácido pantoténico
Vitamina B6 o piridoxina
Vitamina B8, vitamina H o biotina
Vitamina B9, vitamina M o ácido fólico.
Vitamina B12 o cianocobalamina
Vitamina B15* o ácido pangámico
Vitamina B17*, laetril o amigdalina
Liposolubles:
Vitamina A o retinol (antixeroftalmica)
Vitamina D o colecalciferol (antirraquítica)
Vitamina E o tocoferol (antioxidante)
Vitamina K o naftoquinona (antihemorrágica)
Una mnemónica para recordar las liposolubles A, D, K, E es "Ha de kaer" O "ADEK


La deficiencia de vitaminas puede producir trastornos más o menos graves, según el grado de deficiencia, llegando incluso a la muerte. Respecto a la posibilidad de que estas deficiencias se produzcan en el mundo desarrollado hay posturas muy enfrentadas. Por un lado están los que aseguran que es prácticamente imposible que se produzca una hipovitaminosis, y por otro los que responden que es bastante difícil llegar a las dosis de vitaminas mínimas, y por tanto, es fácil adquirir un deficiencia, por lo menos leve. No consumir vitaminas nos puede causar una grave enfermedad. Como el caso de la vitamina C, que si nos hace falta podemos comenzar con una leve tos y luego puede agravarse.


La principal fuente de vitaminas son los vegetales crudos, por ello, hay que igualar o superar la recomendación de consumir 5 raciones de vegetales o frutas frescas al día. Hay que evitar los procesos que produzcan pérdidas de vitaminas en exceso.
DEBEMOS INGERIR DIARIAMENTE UN 15 % DE VITAMINAS DIARIAMENTE.

Funciones
Las vitaminas son moléculas orgánicas cuya ausencia provoca enfermedades llamadas avitaminosis, como el escorbuto. Puesto que el organismo no es capaz de sintetizarlas debe adquirirlas junto con los alimentos. Una dieta en la que falte alguna de ellas provocará trastornos metabólicos que acabará por provocar enfermedades, e incluso la muerte.
Las vitaminas suelen ser precursoras de las coenzimas.
Las vitaminas también actúan como sustancias antioxidantes, que previenen distintos tipos de cáncer. Así por ejemplo la vitamina E, parece que tomada en los alimentos que la contienen, previene del cáncer de próstata.
Actualmente la vitamina D no se considera de manera específica una vitamina, sino que se lo puede considerar como hormona. Las vitaminas B15 y B17 no se consideran actualmente vitaminas.

lunes, 23 de marzo de 2009

PROTEINAS


PROTEINAS
Las proteínas son macromoléculas formadas por cadenas lineales de aminoácidos. El nombre proteína proviene de la palabra griega πρώτα ("prota"), que significa "lo primero" o del dios Proteo, por la cantidad de formas que pueden tomar. Estas son macromoléculas compuestas por carbono, hidrógeno, oxígeno y nitrógeno. La mayoría también contienen azufre y fósforo. Las mismas están formadas por la unión de varios aminoácidos, unidos mediante enlaces peptídicos. El orden y disposición de los aminoácidos en una proteína depende del código genético, ADN, de la persona.

Las proteínas son clasificables según su estructura química en:
Proteínas simples: Producen solo aminoácidos al ser hidrolizados.
Albúminas y globulinas: Son solubles en agua y soluciones salinas diluidas (Ej.: lactoalbumina de la leche).
Glutelinas y prolaninas: Son solubles en ácidos y álcalis, se encuentran en cereales fundamentalmente el trigo. El gluten se forma a partir de una mezcla de gluteninas y gliadinas con agua.
Albuminoides: Son insolubles en agua, son fibrosas, incluyen la queratina del cabello, el colágeno del tejido conectivo y la fibrina del coagulo sanguíneo.
Proteínas conjugadas: Son las que contienen partes no proteicas. Ej.: nucleoproteínas.
Proteínas derivadas: Son producto de la hidrólisis

Que alimentos contienen las proteínas
Las carnes de los mamíferos contienen aproximadamente el 20% de proteínas, pero con variaciones sensibles de un caso a otro; el pescado aproximadamente el 15%, los quesos del 18 al 33%, la leche poco más del 3%. El albumen de huevo está constituido, además de agua, por proteínas muy preciadas. También la pasta (10-12%), el pan (9%) y las legumbres (18-24% del peso seco) contienen proteínas.
Energeticamente, las proteinas aportan al organismo 4kcal. de energia por cada gramo que se ingiere.
Se debe de ingerir un 40% de proteinas como consumo diario, para llevar una dieta balanceada y estar saludable.
Funciones
Las proteínas ocupan un lugar de máxima importancia entre las moléculas constituyentes de los seres vivos (biomoléculas). Prácticamente todos los procesos biológicos dependen de la presencia o la actividad de este tipo de moléculas. Bastan algunos ejemplos para dar idea de la variedad y trascendencia de las funciones que desempeñan. Son proteínas
casi todas las enzimas, catalizadores de reacciones químicas en organismos vivientes;
muchas hormonas, reguladores de actividades celulares;
la hemoglobina y otras moléculas con funciones de transporte en la sangre;
los anticuerpos, encargados de acciones de defensa natural contra infecciones o agentes extraños;
los receptores de las células, a los cuales se fijan moléculas capaces de desencadenar una respuesta determinada;
la actina y la miosina, responsables finales del acortamiento del músculo durante la contracción;
el colágeno, integrante de fibras altamente resistentes en tejidos de sostén.

sábado, 7 de marzo de 2009

LIPIDOS


LIPIDOS



Los lípidos son un conjunto de moléculas orgánicas, la mayoría biomoléculas, compuestas principalmente por carbono e hidrógeno y en menor medida oxígeno, aunque también pueden contener fósforo, azufre y nitrógeno, que tienen como característica principal el ser hidrofobicas o insolubles en agua y sí en disolventes orgánicos como la bencina, el alcohol, el benceno y el cloroformo. En el uso coloquial, a los lípidos se les llama incorrectamente grasas, aunque las grasas son sólo un tipo de lípidos procedentes de animales. Los lípidos cumplen funciones diversas en los organismos vivientes, entre ellas la de reserva energética (triglicéridos), la estructural (fosfolípidos de las bicapas) y la reguladora (esteroides).

Clasificación de los lípidos
Los lípidos se clasifican como saponificables, lo cuales se dividen en simples y complejos y los saponificables a su vez se dividen en: esteroides y eicosainoides.


Enfermedades por exceso de lípidos:
-Arterioesclerosis
-Hiperlipidemia.
-Trigliceridemia
-Infarto Almiocardio
-Infarto Cerebral
-Obesidad
-Colesterodemia
-Hipertensión.

Alimentos que contienen lípidos
- Aceites
- Mantequillas y margarinas
- Leche y otros derivados lácteos
- Frutos secos
- Pescados, carne, huevos
- .....
En nuestra alimentacion diaria debemos ingerir un 30% de lipidos.

miércoles, 18 de febrero de 2009

CARBOHIDRATOS


CARBOHIDRATOS

Los carbohidratos, también llamados glúcidos, se pueden encontrar casi de manera exclusiva en alimentos de origen vegetal. Constituyen uno de los tres principales grupos químicos que forman la materia orgánica junto con las grasas y las proteínas.
Los carbohidratos son los compuestos orgánicos más abundantes de la biosfera y a su vez los más diversos. Normalmente se los encuentra en las partes estructurales de los vegetales y también en los tejidos animales, como glucosa o glucógeno. Estos sirven como fuente de energía para todas las actividades celulares vitales.
Aportan 4 Kcal./gramo al igual que las proteínas y son considerados macro nutrientes energéticos al igual que las grasas. Los podemos encontrar en una innumerable cantidad y variedad de alimentos y cumplen un rol muy importante en el metabolismo. Por eso deben tener una muy importante presencia de nuestra alimentación diaria.
En una alimentación variada y equilibrada aproximadamente unos 300gr./día de hidratos de carbono deben provenir de frutas y verduras, las cuales no solo nos brindan carbohidratos, sino que también nos aportan vitaminas, minerales y abundante cantidad de fibras vegetales. Otros 50 a 100 gr. diarios deben ser complejos, es decir, cereales y sus derivados. Siempre preferir a todos aquellos cereales que conservan su corteza, los integrales. Los mismos son ricos en vitaminas del complejo B, minerales, proteínas de origen vegetal y obviamente fibra.
La fibra debe estar siempre presente, en una cantidad de 30 gr. diarios, para así prevenir enfermedades y trastornos de peso como la obesidad. En todas las dietas hipocalóricas las frutas y verduras son de gran ayuda, ya que aportan abundante cantidad de nutrientes sin demasiadas calorías.
Clasificación de los hidratos de carbono:
LOS SIMPLES: Los carbohidratos simples son los monosacáridos, entre los cuales podemos mencionar a la glucosa y la fructosa que son los responsables del sabor dulce de muchos frutos. Con estos azúcares sencillos se debe tener cuidado ya que tienen atractivo sabor y el organismo los absorbe rápidamente. Su absorción induce a que nuestro organismo secrete la hormona insulina que estimula el apetito y favorece los depósitos de grasa.
LOS COMPLEJOS: Los carbohidratos complejos son los polisacáridos; formas complejas de múltiples moléculas. Entre ellos se encuentran la celulosa que forma la pared y el sostén de los vegetales; el almidón presente en tubérculos como la patata y el glucógeno en los músculos e hígado de animales.

miércoles, 11 de febrero de 2009

AGUA


AGUA

El agua es el compuesto formado por dos átomos de hidrógeno y uno de oxígeno (H2O). El término agua se aplica en el lenguaje corriente únicamente al estado líquido de este compuesto, mientras que se asigna el término hielo a su estado sólido y el término vapor de agua a su estado gaseoso.
El agua es una
sustancia química esencial para la supervivencia de todas las formas conocidas de la vida.
El estado natural del agua puede ser afectado por procesos naturales; por ejemplo: los suelos, las rocas, algunos insectos y excrementos de animales. Otra forma como se puede cambiar su estado natural es artificialmente, fundamentalmente, por causas humanas; por ejemplo: con sustancias que cambien el pH, un ejemplo de esto sucede con el agua de lluvia, que ha ido incrementando su acides cada vez mas, en Europa se presentan lluvias con un pH de 5 y en América se presentan lluvias con un pH de 6, este problema se origina a partir de las emanaciones toxicas de las fabricas, autos y hogares, como lo son el SO3 y el NO2. Otro problema es la salinidad del agua, producidas por actividades mineras.
La contaminación del agua ocurre en poblaciones que no tienen desagües, sistemas de disposición de excretas o deficientes procesos de recogida y almacenaje de desechos; y arrojar basuras y aguas fecales (o servidas) a los ríos.
Otra causa de problemas en el agua es el exceso de nutrientes: fertilizantes vertidos en ella, especialmente los compuestos por fósforo y sus derivados, hacen que originen algas en exceso, impidiendo la entrada de luz solar al lago o laguna, y la muerte de los peces.
Sustancias tóxicas, como los metales pesados (plomo y cadmio), generan bioacumulación. Los residuos urbanos (aguas negras o aguas servidas), que contienen excrementos, también generan contaminación
Más de 2,2 millones de personas murieron en el año 2000 por enfermedades relacionadas con el consumo de agua contaminada o por ahogamiento. En 2004 el programa de caridad enfocado al agua WaterAid del
Reino Unido informó que un niño muere cada 15 segundos debido a las enfermedades relacionadas con el agua que podrían fácilmente evitarse. Una de las posibles soluciones para evitar que el agua se siga contaminando, es usarla con responsabilidad y respeto, por que en la superficie de la Tierra hay unos 1.360.000.000 km3 de agua que se distribuyen de la siguiente forma:
1.320.000.000 km3 (97,2%) son
agua de mar.
40.000.000 km3 (2,8%) son
agua dulce, NADA MAS ESTO ESTA DISPONIBLE PARA LAS NECESIDADES HUMANAS.

viernes, 6 de febrero de 2009

BIOQUIMICA

La bioquimica es la rama de la quimica q se encarga del estudio de la estructura y funcion de los componentes de los seres vivos y se basa en el concepto de q todo ser vivo contiene carbono.
La bioquimica comenzo por el descubrimiento de la primera enzima, en 1833 por Anselme Payen.

lo q espero en 6 semestre

Lo q yo espero en este semestre es q me valla bien en mis calificaciones igual o mejor q las antariores y en el proyecto q me lo acepten los asesores para por medio de el titularme sin problemas.

OMEGAR CRUZ ARVIZU

ESP: LAB. QUIMICO

SEM: 6 SEMESTRE